IBERDROLA INNOVA I+D+i 2021/2022

GUÍA INTRODUCTORIA AL TEMA

"E-salud y telemedicina: "Extracción automática de conocimiento médico a partir de la Historia Clínica Electrónica"

Texto de los Dr. Adolfo Muñoz Carrero y Ricardo Sánchez de Madariaga

1. ¿Qué son la e-salud y la telemedicina?

¿Qué son la salud digital, la e-salud y la telemedicina? Lo cierto es que todos estos conceptos pueden resultar confusos; incluso acudiendo a la literatura científica, en ocasiones se mezclan sus significados y áreas de uso. Por eso, conviene comenzar definiendolos. Según la Organización Mundial de la Salud (OMS), en su guía "Recomendaciones sobre intervenciones digitales para el fortalecimiento del sistema de Salud" define la e-salud como el uso de las tecnologías de la información y las comunicaciones (TIC) como soporte en los campos de la salud y los relacionados con la salud y la salud digital como un concepto englobador que incluye nuevas disciplinas como la computación avanzada en biq data o en genómica, y la inteligencia artificial. El término telemedicina se reserva para el uso de las TIC en la prestación a distancia de servicios asistenciales de salud e incluye varias "especialidades" (teleradiología, teledermatología, telesiquiatría,...) y "procesos" (telemonitorización, telediagnóstico, teleconsulta, ...). Cuando las tecnologías empleadas son las de la red de telefonía móvil, se habla de m-salud.

2. Contexto actual

El contexto actual de nuestra sociedad está marcado por ciertos cambios sociodemográficos que están ocurriendo y que afectan al funcionamiento de los sistemas públicos de salud y a su sostenibilidad. Así, desde el punto de vista demográfico:

- El envejecimiento de la población (según las previsiones, los mayores de 65 representarán en España el 27% en 2025 y el 38% en 2050), provocado por la mayor esperanza de vida y por el buen funcionamiento de los sistemas sanitarios, va a ocasionar una mayor carga para el propio sistema pues esta población sufre de una mayor morbilidad (comorbilidad en la mayoría de los casos) y es más dependiente.
- El fenómeno de la inmigración está provocando, por un lado, un cambio en la pirámide poblacional que ocasiona cambios cualitativos y cuantitativos en la población a atender en cada centro sanitario, y por otro, las variaciones relevantes en la incidencia o prevalencia de determinadas enfermedades vinculadas con la morbilidad de los países de origen de esta nueva población.

Desde el punto de vista social también se están produciendo una serie de cambios:

- En la sociedad actual los ciudadanos cada vez cambiamos más de lugar de residencia, tanto de forma permanente por cuestiones laborales o de retiro, como temporales, por turismo, ocio o trabajo, al tiempo que exigimos que los servicios recibidos en esos lugares mantengan la calidad de nuestro lugar de origen. Mientras servicios como la telefonía móvil o los bancarios son capaces de hacer frente a estas demandas, los servicios sanitarios están comenzando a plantearse este problema.
- Los hábitos de vida actuales están causando una mayor incidencia de enfermedades crónicas que suponen un importante reto para el sistema sanitario. El tabaquismo, el sedentarismo y los malos hábitos alimentarios provocan un incremento en el número de pacientes crónicos que sufren obesidad, diabetes, hipertensión, cardiopatías, etc. Incluso los cambios en los modelos de relaciones sociales están causando un incremento en los casos de depresión.

Desde el punto de vista organizativo:

Los sistemas públicos sanitarios están diseñados para el tratamiento de la enfermedad aguda (enfermamos, vamos al hospital, nos tratan y nos volvemos a casa), no estando optimizados para los cuidados que requieren los casos crónicos, caracterizados por una continuidad en el tiempo de los mismos para evitar las recaídas y para mantener la calidad de vida de las personas en su entorno el mayor tiempo posible.

Y desde el punto de vista de la información, los principales cambios tienen que ver con el uso que se hace de esta:

El paradigma de adquisición de conocimiento está girando hacia el uso masivo de datos, en lo que algunos autores han llamado el cuarto paradigma científico¹: el primero se basaba en la simple observación de los fenómenos naturales, el segundo, el método científico clásico, elabora leyes a partir de las observaciones y utiliza estas para hacer predicciones, el tercero utiliza la potencia de cálculo de los ordenadores para realizar simulaciones, cuando los problemas son muy complejos como para abordarlos a partir de las leyes naturales y, por último, el 4 analiza grandes cantidades de información que se genera en distintos ámbitos para extraer el conocimiento que contienen (inteligencia artificial, deep learning, big data).

ISBN: 978-0-9825442-0-4

¹ El Cuarto Paradigma científico: The Fourth Paradigm: Data-Intensive Scientific Discovery. Tony Hey, Stewart Tansley, Kristin Tolle. Microsoft Research | Octubre 2009

 Internet y la telefonía móvil están haciendo que una gran parte de la actividad humana esté cambiando buscando que se desplace la información y no las personas. Prácticas como el teletrabajo, la educación en línea, el comercio en la red, etc. son cada vez más habituales. Esto también se da en la sanidad, aunque de momento en menor medida.

A todo esto, se suman situaciones imprevistas, como la actual pandemia, que al obligar a modificar profundamente las posibilidades de desplazamiento y de interacción con los demás, hace necesario replantear la manera en la que se prestan los servicios asistenciales. Respecto a la información, estas situaciones tienen dos características: por un lado, las limitaciones de movimiento van a provocar que se genere una gran cantidad de datos y, por otro, al tratarse de un problema nuevo, existe una gran necesidad de generar conocimiento lo antes posible, por lo que las tecnologías de <u>Inteligencia Artificial</u> pueden jugar un papel fundamental.

3. Las TIC y la salud

En el ámbito de la salud, las TIC pueden aportar herramientas en varios campos, como veremos a continuación, pero lo fundamental es que se usen de forma adecuada dentro de servicios que sean útiles, beneficiosos para el sistema y los ciudadanos y que cumplan con los requisitos de equidad, universalidad en el acceso, que estén basados en evidencia científica (es decir, que estén basados en resultados científicamente demostrados) que sean seguros, éticos y que cuiden la protección de datos.

Los principales aspectos en los que las TIC aportan son:

- Las redes de comunicaciones: evidentemente, si queremos llevar los cuidados al entorno del paciente necesitamos canales para llevar la información. Las redes de banda ancha (fibra óptica) en el hogar contribuyen de manera importante, pero también son necesarias las redes móviles, que permiten establecer la comunicación cuando las personas no estén en su domicilio (m-salud). En este sentido, la llegada del 5G abrirá nuevas oportunidades para plantear nuevos servicios.
- Dispositivos llevables (*wearables*): son dispositivos que se basan en sensores y biosensores que son capaces de monitorizar al paciente, es decir, de recoger información sobre las constantes vitales de las personas y transmitirlas para su utilización en la atención.
- Entorno inteligente: también la tecnología proporciona herramientas para monitorizar el entorno, desde detectores para medir el ambiente (calidad del

- aire, humedad, luz, presencia de tóxicos o contaminantes, ...) hasta sistemas de posicionamiento que nos permiten conocer la localización de las personas o las cosas y ayudar, por ejemplo, en desplazamientos.
- Herramientas de ayuda a la decisión: la disponibilidad de los datos, así como la capacidad de cálculo a la que cada vez podemos acceder de manera más sencilla permite la creación de herramientas que ayuden a la toma de decisiones, incluso de manera automática, desde cambios en los tratamientos a establecer diagnósticos.
- Herramientas de extracción de conocimiento: al igual que en el punto anterior, la gran cantidad de datos disponibles (y no exclusivamente del campo sanitario, sino también socioeconómicos, geográficos, ambientales, genéticos, ...) junto con las capacidades de computación, permiten diseñar y emplear algoritmos de Inteligencia Artificial y de *Machine Learning*, capaces de extraer patrones y relaciones de los datos, incrementando el conocimiento

4. ¿Cómo puede ayudar la Salud Digital?

Tal y como apunta la definición de Salud Digital (el empleo de las TIC en la Salud), los campos en los que esta puede ayudar son muy variados y no están cerrados, pues se podrán encontrar nuevas maneras de aplicarlas a medida que avancen los descubrimientos o se implanten nuevas tecnologías. A continuación, veremos algunos ejemplos de áreas en las que ya se está trabajando y proyectos implementados. Aunque la mayoría de los proyectos tienen componentes en varias áreas:

Servicios asistenciales proporcionados en el entorno del paciente

Lo que se pretende con servicios de esta clase es llevar la asistencia al entorno del paciente sin que este se tenga que desplazar a un centro sanitario. Se basan normalmente en una plataforma sobre la que se implementa el protocolo, especificado por los profesionales sanitarios a cargo de los pacientes, que han de seguir estos. La plataforma suele estar compuesta por un sistema de comunicaciones, que puede permitir el envío de información desde el paciente al centro sanitario (recogida, por ejemplo, por medio de sensores² o a través de cuestionarios), desde los profesionales sanitarios hacia los pacientes o los cuidadores (para proponer modificaciones del

² Existen sensores para monitorizar una gran cantidad de parámetros: acelerómetros, actividad electrodérmica, altímetros, la contracción muscular, deformación de tejidos, ECG, EEG, EMG, EOG, luz ambiental, giróscopos, GPS, humedad, oxímetros, podómetros, presión arterial, pulsímetros, termómetros, transpiración, umbral de ácido láctico, respiración; y también están apareciendo biosensores que son capaces de analizar diferentes fluidos corporales, con el objetivo de ser lo menos invasivos posible: hay biosensores para analizar el sudor, las lágrimas, el líquido intersticial o la saliva.

tratamiento o recomendar acciones, por ejemplo) y que puede ser en tiempo real o de forma asíncrona.

Servicios de empoderamiento del paciente

Este tipo de servicios son similares al caso anterior, es decir, se pretende llevar el servicio asistencial al entorno del paciente, pero añadiendo un componente de formación que le permita ir tomando el autocontrol de su enfermedad. Además de las características de los servicios anteriores, se suele contar con medios para poder realizar consultas con los especialistas (síncronas o asíncronas) o de foros en los que poder compartir la experiencia con otras personas en la misma situación o que ya han avanzado en el control.

Nuevos servicios asistenciales basados en TIC

La principal característica de estos servicios es que se utilizan las TIC para poder prestar un servicio que sin ellas no sería posible. Por lo demás, son muy similares al primer caso: suelen basarse en una plataforma sobre la que se monta un protocolo y se dota a los pacientes de los sensores que necesiten para capturar la información, de las aplicaciones necesarias para comunicarla y a los profesionales sanitarios de lo que necesitan para analizar los datos, tomar decisiones y trasladar sus recomendaciones a los pacientes.

Servicios educacionales

Este tipo de servicios se basa fundamentalmente en formar a pacientes en convivir con su enfermedad. Suele aplicarse a personas cuya situación ha cambiado como consecuencia de una nueva condición, formándoles en cómo cambiar sus hábitos para mejorar su estado de salud o en aprender a cómo gestionar su nueva situación, tanto desde el punto de vista físico como emocional. Estas características pueden estar presentes en otros servicios también.

Servicios de formación de cuidadores

Al igual que en el tipo anterior, estos servicios se dirigen a la formación, pero, en este caso, a los cuidadores informales. Los cuidadores informales son las personas del entorno del paciente (normalmente familiares) que se encargan del cuidado de este en su entorno. Esta actividad no solo necesita formación para ser desarrollada de manera adecuada, sino que también puede llegar a ocasionar problemas en los cuidadores por el desgaste que sufren al tener que ocuparse del paciente. Por lo tanto, estos servicios se enfocan en la formación del cuidador en las tareas a realizar, así como en intentar paliar la sobrecarga del mismo. Suelen contar no sólo con elementos educativos, como el caso anterior, sino también con la posibilidad de realizar consultas a los profesionales sanitarios a cargo del paciente.

Servicios de prevención y detección de recaídas

Estos servicios suelen estar dirigidos a pacientes en situación de fragilidad y tienen el objetivo de evitar que la situación de los mismos empeore o que sufran recaídas que obliguen a su ingreso en un centro sanitario. Se basan en monitorizar diferentes aspectos del entorno del paciente o de su comportamiento (por ejemplo, cuánto tiempo pasa en la cama, si sale o no de casa, si utiliza la cocina o la nevera, si recibe visitas, etc.) y constantes vitales y analizarlas para detectar los llamados "eventos centinela" que son aquellos que se sabe que preceden a un cambio en la situación del paciente.

Servicios de control y salud pública

Otra categoría son los servicios dirigidos no a personas individuales, sino a poblaciones completas, que usen las TIC para conseguir un beneficio común. Estos servicios son muy variados y pueden ir desde campañas de información o educativas, utilizando, por ejemplo, las redes sociales, hasta campañas de monitorización del entorno para verificar la calidad del aire o del agua en áreas enteras.

Servicios de extracción y generación de nuevo conocimiento

Hemos dejado para el final de esta lista los servicios de extracción y generación de nuevo conocimiento porque, a continuación, en la sección 5, vamos a ver con más detalle este tipo de tecnologías. Como se dijo en el apartado 2 de esta introducción, el paradigma científico está cambiando y una gran parte del conocimiento actual se adquiere por medio del análisis masivo de datos gracias a técnicas de inteligencia artificial. Estos proyectos se basan en recoger datos que pueden provenir de fuentes muy diversas: sensores en el cuerpo del paciente y su entorno, la historia clínica, análisis genéticos, información demográfica y ambiental, etc. Después se analizan buscando patrones de relaciones entre dichos datos que nos permitan mejorar el conocimiento que se tiene de las enfermedades y de la forma en que las diferentes personas reaccionan a las mismas. En este tipo de servicios resulta muy importante la gobernanza de los datos: desde la protección de la intimidad de las personas hasta la disponibilidad y el acceso a los mismos pasando por la estandarización.

Como se ha podido ver, los posibles usos de las TIC en el ámbito de la Salud son muy amplios. Los ejemplos vistos aquí no pueden, ni pretenden, ser una lista exhaustiva, pues la forma en que se aplican estas tecnologías depende de cada caso y de las necesidades que existan en el mismo y la investigación en este campo está continuamente planteando nuevos casos de uso. De igual manera, según se desarrollen nuevas tecnologías (por ejemplo, 5G) o mejoren las existentes (por ejemplo, un

incremento en la potencia de cálculo de los ordenadores o de capacidad de transmisión de las redes) se podrán plantear nuevos usos.

5. Extracción automática de conocimiento médico a partir de la Historia Clínica Electrónica

¿Qué es el aprendizaje máquina (Machine Learning)?

En la actualidad nos encontramos desbordados por los datos. La cantidad de datos guardada y disponible crece sin freno. Esto se debe fundamentalmente a la capacidad pasmosamente fácil con la que los ordenadores graban datos en memoria, junto con el abaratamiento continuo de ese tipo de memoria; y a la abundancia de dispositivos electrónicos que almacenan datos continuamente por todo el mundo.

Además, la World Wide Web (WWW) nos inunda continuamente con cada vez más información que está disponible inmediatamente, algo que no ocurría hasta hace pocos años.

Sin embargo, se podría afirmar con seguridad que hay una gran diferencia entre esta generación de datos y nuestra comprensión de ellos. Se podría decir que el *Machine Learning* (ML) trata sobre la búsqueda de patrones (o regularidades) en esos datos.

Sin embargo, esto no es nada nuevo: los cazadores siempre han buscado patrones en las migraciones animales; los granjeros buscan patrones en el crecimiento de los cultivos, y los políticos buscan patrones en las intenciones de voto.

El trabajo de los científicos es dar sentido a los datos del mundo físico buscando patrones que les permitan elaborar teorías científicas que les sirvan para predecir lo que ocurrirá ante situaciones nuevas. El trabajo de los empresarios, por ejemplo, consiste en identificar oportunidades, es decir, patrones en la conducta que puedan dar lugar a negocios rentables.

El *Data Mining* (DM), disciplina basada directamente en el ML, se dedica a buscar patrones en datos automáticamente.

Sin embargo, esto tampoco es nada nuevo: lo vienen haciendo desde hace muchos años los economistas, estadísticos, previsores del tiempo e ingenieros. Buscan patrones en datos automáticamente, los identifican, los validan y los usan como método para predecir.

Lo que sí es realmente nuevo, y ha dado lugar al desarrollo sin precedentes del ML, es el asombroso incremento de las oportunidades para encontrar patrones en los datos,

debido al crecimiento desenfrenado del número de Bases de Datos (BD) en los últimos años. Se estima que la cantidad de datos almacenados en todas las BBDD del mundo se duplica cada 20 meses. Ante este crecimiento casi exponencial de la complejidad del mundo, que nos desborda con la cantidad de datos que genera, el ML resulta ser la única manera de descubrir esos patrones ocultos y en definitiva de entender el mundo. Los datos analizados inteligentemente son un recurso muy valioso. Puede dar lugar a nuevo conocimiento y, en entornos comerciales, a ventajas competitivas.

Un ejemplo muy simple

Supongamos que queremos predecir si unos niños van a jugar al aire libre un día cualquiera, dependiendo de las condiciones meteorológicas de ese día. Y supongamos que para ello tenemos una BD que contiene datos sobre el tiempo meteorológico en diferentes días pasados y si esos días unos niños han podido jugar o no a algún juego al aire libre. A partir de esa BD más o menos grande, hemos podido rellenar esta matriz, en la que las filas representan diferentes días y las columnas diferentes estados meteorológicos de esos días. Además, hay una columna que nos dice si ese día (fila) los niños han podido jugar o no.

previsión	temperatura	humedad	viento	jugaron
Soleado	Calor	Alta	No	No
Soleado	Calor	Alta	Si	No
Nublado	Calor	Alta	No	No
Lluvioso	Templado	Alta	No	Si
Lluvioso	Frío	Normal	No	Si
Lluvioso	Frío	Normal	Si	No
Nublado	Frío	Normal	Si	Si
Soleado	Templado	Alta	No	Si

Una manera sencilla en la que podríamos expresar un patrón extraído de esos datos sería la siguiente:

Si previsión = soleado y humedad = alta entonces jugaron = no

Este patrón nos permitiría decidir en el futuro si llega un día soleado y con humedad alta que los niños no van a jugar al aire libre y lo van a hacer en casa.

Aplicaciones reales del Machine Learning

Naturalmente el ejemplo anterior es completamente ficticio y deliberadamente pequeño como para ser calificado inmediatamente como *toy problem*. Una serie de aplicaciones reales del ML sería la siguiente:

Minería de la Web

Un ejemplo es el de cómo los buscadores calculan el prestigio de una página Web (información que usa, por ejemplo, Google en su famoso algoritmo).

Parten de una serie de consultas de ejemplo y documentos (páginas Web) que contienen los términos de la consulta (y por tanto son devueltos por el buscador) y de juicios humanos sobre la relevancia de los documentos para la consulta.

Estos datos se usan como entrenamiento de un algoritmo ML. Por comparación con el ejemplo anterior2, se seleccionarían una serie de características de los documentos (páginas) basadas en los términos de la consulta. Por ejemplo: si el término está en el título, en la URL de la página o cuántas veces aparece en el propio texto de la página. Estas características equivalen a los diferentes estados meteorológicos de la matriz del ejemplo (columnas). Un algoritmo real puede usar unos cientos o miles de estas características. La columna 'jugaron' equivale a si el documento/página es relevante o no. Y las filas corresponden a los términos de la consulta.

Una vez que el algoritmo ML es entrenado con estos datos, genera un modelo que es capaz de predecir automáticamente si una consulta devuelve un documento relevante o no. Y con esta información, dado un conjunto especialmente seleccionado de consultas, se puede calcular fácilmente el prestigio de una página Web.

• Decisiones a partir de juicios

Cuando se pide un préstamo a un banco, éste aplica una serie de cálculos estadísticos sobre los datos que has puesto en los formularios para decidir si te dan el préstamo o no. Normalmente hay un umbral numérico por encima del cual te dan el préstamo y por debajo no.

Sin embargo, los clientes *borderline* (alrededor del umbral) son un poco más complejos. Lo más sencillo sería denegarles el crédito, pero los profesionales de la industria del crédito saben perfectamente que estos clientes pueden ser los más rentables, simplemente sus finanzas están en una condición volátil crónicamente.

Un algoritmo de ML se puede entrenar con 1,000 clientes *borderline* (filas) a los que de hecho se les ha dado un crédito y se sabe si lo devolvieron o no. Las columnas son unas 20 características sacadas de los formularios (edad, años con el empleador actual, años

en la dirección actual, años con el banco, posesión de otras tarjetas de crédito, etc.). Y una columna extra sobre si devolvió el crédito o no.

Una vez entrenado con esta matriz, el algoritmo ML construye un modelo, al que se le puede presentar un nuevo cliente con las 20 características que tenga y prediga la columna sobre si pagará o no. Aunque este sistema ML tuviera una tasa de acierto de sólo dos tercios de los nuevos clientes *borderline*, los ahorros para el banco serían muy considerables.

Diagnóstico

El mantenimiento preventivo de toda clase de dispositivos electromecánicos como motores o generadores puede impedir fallos que paralicen los procesos industriales.

Los técnicos inspeccionan cada dispositivo regularmente, midiendo vibraciones en varios puntos y otras características similares para decidir si el dispositivo necesita ser reparado o no.

Una planta química normal usa más de 1,000 dispositivos diferentes, que eran diagnosticadas hasta hace poco por un experto con más de 20 años de experiencia. La información acumulada por un experto puede ser usada para entrenar un sistema ML que, dada una situación de avería, decida qué tipo de avería es. Es decir, la matriz estaría formada en las filas por un tipo de avería determinado, en las columnas las medidas de vibraciones que hace el experto en diferentes puntos, entre otras características y en la columna extra objetivo, el tipo de avería.

Dependiendo del tipo de algoritmo ML usado, éste puede generar una serie de reglas que, usando valores de características, predigan el tipo de avería. Esto es precisamente lo que suele hacer el experto manualmente.

En un caso real, el sistema dedujo más reglas que el experto humano y, en conjunto obtenían una mayor precisión.

Biomedicina

Tenemos datos procedentes de Historia Clínica Electrónica y otras fuentes de hospitales, sobre pacientes que han acudido a urgencias de esos hospitales por estar infectados de covid-19. Estos datos se corresponden con comorbilidades previas de los pacientes, analíticas medidas en urgencias o en el hospital, constantes vitales en urgencias o en planta durante el ingreso en el hospital, y tratamientos con medicinas basales, o en planta. Con estos datos podemos determinar qué pacientes han seguido una evolución mala y se han convertido en pacientes graves. Con toda esta información queremos caracterizar la infección por covid-19, que todavía es bastante mal conocida, determinando cuáles de estas características médicas influyen en la supervivencia o no de estos pacientes graves. Para ello conducimos experimentos de ML clasificando

pacientes graves en supervivientes y fallecidos. De esta manera sabiendo qué subconjuntos de características médicas producen los mejores clasificadores podemos determinar esas características como significativas para la supervivencia de los pacientes e incrementar nuestro conocimiento médico sobre la covid-19. Además de disponer de nuevos y precisos clasificadores que nos sirven para predecir si un paciente nuevo grave va a sobrevivir o no. Esta información puede ser muy importante para el uso adecuado de los recursos médicos del hospital.

Otras aplicaciones

Hay infinitas aplicaciones. Por ejemplo, en banca detectar potenciales clientes que se van a ir a otro banco a través de cambios en sus patrones de conducta. O grupos de clientes para los que sería apropiado un nuevo servicio.

El análisis de la cesta de la compra sirve para encontrar grupos de ítems que tienden a ocurrir juntos en las transacciones de cualquier tipo. Por ejemplo, en un supermercado esa información puede ser muy útil para planificar los almacenamientos, limitar los descuentos especiales a sólo un ítem de los que suelen aparecer juntos u ofrecer cupones de un producto cuando sólo se ha comprado otro del mismo conjunto.

Para una compañía de marketing directo las promociones masivas son muy caras y tienen una tasa de respuesta muy baja, aunque muy rentable. Cualquier información que les ayude a focalizar sus promociones tiene mucho valor para ellas. Por ejemplo, información demográfica o caracterizadora de un código postal.

En general los procesos de fabricación sofisticados tienen en cuenta muchos parámetros muy delicados. Por ejemplo, la separación de petróleo crudo de gas natural en el refinamiento del petróleo. Por ejemplo, British Petroleum ha creado un sistema ML para generar reglas que calculen los parámetros. Este sistema dura 10 minutos, mientras que el manual duraba más de un día.

Hay muchas aplicaciones científicas. En biología identifican miles de genes en cada nuevo genoma. En biomedicina predecir la actividad de los medicamentos, analizando no sólo sus propiedades químicas, sino también su estructura tridimensional. Así se acelera el descubrimiento de nuevos medicamentos reduciendo además su coste. En astronomía desarrollar un catálogo de objetos celestiales no visibles a simple vista. En química, predecir la estructura de ciertos compuestos orgánicos a partir de su espectro de resonancia magnética.

En todas estas aplicaciones los sistemas ML han demostrado que obtienen una eficacia que iguala o supera la de los expertos humanos.

Hay básicamente cuatro tipos de aprendizaje en los sistemas de ML. Sólo el primer tipo se usa para clasificar. Los demás usos son similares, pero algo diferentes.

<u>Clasificación</u>: el sistema se entrena con una serie de ejemplos (filas) con unas características (columnas) y su clasificación correcta (columna objetivo). El sistema entrenado sirve para clasificar nuevos ejemplos.

<u>Asociación</u>: en este caso se busca cualquier asociación entre características de los ejemplos, es decir, no sólo las que predicen el valor de la columna objetivo.

<u>Clustering</u>: se agrupan en conjuntos ejemplos parecidos según los valores de sus características.

<u>Predicción numérica</u>: no se predice el valor discreto de la columna objetivo de un ejemplo nuevo, sino una cantidad numérica.

A continuación, vamos a desarrollar otro *toy problem* para ilustrar el funcionamiento básico del ML en un problema de clasificación.

Nuestro objetivo es generar unas pocas reglas sencillísimas que sirven para clasificar un nuevo día en si ese día los niños van a jugar afuera o no. Ver más abajo la familia de algoritmos de ML denominada 'Reglas'. Volviendo a la tabla de los datos meteorológicos, generamos una serie de reglas muy simples para cada característica (columna segunda de la siguiente tabla). Se genera una regla por cada posible valor de la característica, y el resultado (consecuente) es el mayoritario para cada valor (mayor número de síes o mayor número de noes en la columna jugaron). Además, se apunta en la tercera columna el número de errores cometidos por cada regla. Es decir, el número de veces que la regla predijo sí y la realidad era no y al revés. Casos mal cubiertos de todos los posibles. En la cuarta columna están los errores cometidos en total por cada grupo de reglas. En este caso elegimos el segundo grupo (1/8) y ya hemos generado tres reglas. Somos conscientes que estas reglas son mínimas y casi no sirven para clasificar completamente cualquier día nuevo. Simplemente hemos utilizado el ejemplo para ilustrar mínimamente el modo de aprender de un algoritmo ML. Más adelante hay ejemplos que quizá lo puedan hacer un poco mejor.

Característica	Reglas	Errores	Errores Totales
	Soleado no	1/3	
Previsión	Nublado no*	1/2	3/8
	Lluvioso sí	1/3	
Temperatura	Calor no	0/3	1/8

	Templado sí	0/2		
	Frío si*	1/3		
Humedad	Alta no	2/5	3/8	
	Normal si	1/3		
Viento	Sí no	1/3	3/8	
	No no	2/5		

Nota: el asterisco (*) significa empate

Principales familias de algoritmos de Machine Learning

Modelos estadísticos

Estos modelos están basados en la regla de Bayes de las probabilidades a priori. Unas familias de algoritmos se pueden comportar mejor que otras dependiendo del problema de ML concreto a resolver. Supongamos que calculamos la probabilidad de (jugaron = si) y (jugaron = no) de la pareja (previsión/soleado). Esto es la probabilidad de que si el día es soleado los niños jueguen o no al aire libre.

Sale Pr(si/(previsión/soleado)) = 1/3 Sale Pr(no/(previsión/soleado)) = 2/3

Lo mismo podríamos hacer con todas las parejas (característica/valor).

Ahora supongamos que llega un día nuevo con los siguientes valores:

Soleado, frío, alta, sí

La probabilidad de que los niños jueguen ese día fuera sería:

$$Pr(si) = (1/4) * (2/4) * (2/4) * (1/4) * (4/8) = 0.0078125$$

Es decir, un 0.0078125/(0.0078125+0.0234375) = 0,25 (un 25%)

Y la de que no jueguen:

$$Pr(no) = (2/4) * (1/4) * (3/4) * (2/4) * (4/8) = 0.0234375$$
 (75%)

Es decir, 0.0234375/(0.0078125+0.0234375) = 0,75 (un 75%)

Por lo tanto, ese día (ejemplo) se clasificaría como no. En esta familia de algoritmos se incluyen Redes Bayesianas y *Naïve Bayes* entre otros.

Árboles de decisión

Los árboles de decisión son otra familia importante de algoritmos de ML que pueden ser más apropiados que otros dependiendo del problema concreto de ML. Un árbol de decisión se construye seleccionando una característica como nodo raíz del árbol (se construirán tantos árboles como características, al final se elegirá uno).

Este nodo raíz se divide en tantas ramas como posibles valores tenga la característica. En cada rama se repite el mismo proceso recursivamente. Es decir, se construyen tantos árboles como características queden, siendo esta característica el nodo raíz y después se elegirá uno de estos subárboles. El proceso termina cuando se llega a una rama que ya sólo produce un valor posible y ya no se puede bifurcar.

Dado un ejemplo nuevo, recorre el árbol según el valor de cada una de sus características en cada rama, hasta que llega a un nodo hoja que sólo tiene un valor (de la característica objetivo) y ese es el valor en que se clasifica.

Ya sólo queda el criterio de elección de subárboles (nodo raíz de cada rama, incluido el nodo raíz absoluto).

Esto se hace calculando los posibles valores de la característica objetivo en cada combinación de característica/valor pero ahora nos interesa la que el proceso recursivo acabe cuanto antes (árboles pequeños). Hay una medida de la pureza de cada subárbol que produce este resultado. En Teoría de la Información se llama precisamente información y se mide en bits. Se hace un cálculo simple de la ganancia de cada posible característica como nodo raíz del subárbol y se elige la mayor.

Reglas

Esta es otra familia muy importante de algoritmos de clasificación de ML. Los algoritmos que construyen reglas se llaman en inglés *covering algorithms* porque identifican reglas que van cubriendo algunos de los ejemplos.

Estos algoritmos trabajan añadiendo tests a la regla en construcción para que tenga la máxima precisión, es decir, para que del número de ejemplos que la regla cubre el número de ejemplos sea mayor. Esto implica encontrar una característica/valor en la que hacer el test para maximizar la probabilidad de la clasificación deseada.

En otras palabras, elegido el valor resultado de la característica objetivo calculamos el test (sobre cada posible combinación característica/valor) que maximiza el número de esos valores resultado en relación a todos los que produce sólo la característica.

En el ejemplo de los datos del tiempo:

Previsión/Iluvioso

Elegimos el valor de jugaron sí.

```
If ? then (jugaron = sí)
```

La lista de combinaciones característica/valor con sus probabilidades es:

2/3

	•	, -
-	Previsión/soleado	1/3
-	Previsión/nublado	1/2
-	Temperatura/templado 2/2	
-	Temperatura/frío	2/3
-	Humedad/alta	2/5
-	Humedad/normal	2/3
-	Viento/sí	1/3
_	Viento/no	1/2

Elegimos la más alta: Temperatura/templado

```
If (Temperatura/templado) then (jugaron = sí)
```

Esta regla es muy precisa (cubre 2 ejemplos, 2 filas en las que la temperatura es templada y en ambas los niños jugaron) pero si hubiera tenido menor precisión podríamos seguir refinando así:

```
If (Temperatura/templado) and (?) then (jugaron = sí)
```

Hasta llegar al nivel de precisión que quisiéramos.

• Reglas de Asociación

Las Reglas de Asociación (RA) forman parte de la familia de algoritmos de ML, pero son tan importantes que merecen una sección aparte. Relacionan combinaciones de características/valores, denominadas técnicamente ítem sets, de la misma forma que las Reglas normales. La única diferencia es que en el consecuente puede haber cualquier característica, no sólo la característica objetivo.

Por ejemplo, si elegimos las combinaciones:

```
humedad = normal, viento = no, jugar = si
```

Podemos generar las siguientes RA:

```
If (humedad = normal) and (viento = no) then (jugar = si) (1/1)
```

If (humedad = normal) and (jugar =
$$si$$
) then (viento = no) (1/2)

If (viento = no) and (jugar = si) then (humedad = normal)
$$(1/3)$$

El número de la derecha es el número de ejemplos para los que las tres condiciones se cumplen (llamado exhaustividad, *coverage* en inglés), dividido por el número de ejemplos en los que se cumplen las condiciones del antecedente. Interpretado como fracción es la precisión de la RA.

Hay algoritmos que generan todas las RA posibles para una matriz de datos como la del tiempo, pero el número de ellas es tan alto que se filtran por exhaustividad y precisión mínimos. En el ejemplo anterior, si hubiéramos filtrado por precisión mínima 100% sólo hubiera aparecido la primera RA.

Primero generan todos los ítems sets con la exhaustividad mínima especificada y a partir de ellos las RA con la precisión mínima especificada.

Modelos Lineales

Esta es una de las familias más importantes de algoritmos de ML. Hasta ahora todo trabaja mejor con valores discretos, a no ser que en las reglas y en los árboles pongamos test numéricos, o que discreticemos una característica de valores numéricos.

La Regresión Lineal expresa el valor de la característica objetivo (un número) como combinación lineal de los valores de las demás características (también numéricas).

$$x = w_0 + w_1 a_1 + w_2 a_2 + ... + w_k a_k$$

Se construyen ecuaciones para todas las filas y la matriz de w se calcula para minimizar el error cuadrático medio, que es una medida de la diferencia entre el valor predicho y el real, usando inversión de matrices, pero todo está empaquetado en software estándar.

La Regresión Lineal se puede usar para clasificar. Si la característica objetivo tiene por ejemplo 4 valores discretos en que clasificar los ejemplos, sólo hay que entrenar 4 experimentos de RL en los que los ejemplos que pertenecen a uno de los 4 valores tienen valor numérico 1 y el resto 0. Para clasificar un nuevo ejemplo se ejecutan los cuatro modelos y se selecciona el valor discreto que produzca el mayor valor numérico. Esta técnica se denomina Regresión Lineal Multirespuesta.

El *Perceptron* es una de las primeras Redes Neuronales; clasifica ejemplos numéricos aprendiendo un hiperplano (plano de más de dos dimensiones) que los separa en

clases (de la característica objetivo). Si esto es posible, se dice que los datos de los ejemplos son linealmente separables.

Esta es la ecuación del hiperplano:

$$w_0 a_0 + w_1 a_1 + w_2 a_2 + ... + w_k a_k = 0$$

Se le añade una constante a0 de valor 1, llamada bias. Esto sirve para que, si la suma del nuevo ejemplo con los coeficientes w_i es mayor que 0, predice la primera clase. Si no, predice la segunda.

El algoritmo calcula los valores de los w_i de la siguiente forma: en cada iteración se recorren todos los ejemplos de entrenamiento. Si se encuentra un ejemplo mal clasificado se cambian los parámetros del hiperplano de forma que el ejemplo mal clasificado se acerque al hiperplano o incluso lo atraviese hasta la zona correcta. Si el ejemplo pertenece a la primera clase esto se hace simplemente sumando a los pesos w_i del hiperplano los valores numéricos de las características del ejemplo. Si ocurre que un ejemplo de la segunda clase se clasifica mal, la salida de ese ejemplo se decrementa, moviendo el hiperplano en la dirección correcta.

Esto se puede hacer fácilmente con una Red Neuronal de un nivel de neuronas, como el *Perceptron*.

La mayoría de las redes neuronales actuales pueden resolver el problema de clasificación de ejemplos numéricos, aunque no sean linealmente separables, es decir resuelven problemas no lineales, la mayoría.

6. Cuestiones para el debate

- Teniendo en cuenta los ejemplos comentados en la introducción, ¿qué tipo de nuevos servicios asistenciales se podrían definir?
- ¿Podrían definirse servicios asistenciales no solo en el ámbito sanitario, sino también en el social?
- ¿Cómo podrían unirse ambos? ¿Qué ventajas se obtendrían?
- ¿Qué nuevos servicios podrían definirse con la tecnología 5G que actualmente no son posibles o eficientes?

- ¿Qué aspectos éticos piensas que se deberían tener en cuenta a la hora de diseñar un nuevo servicio basado en las TIC? ¿Y en cuanto a la seguridad de las personas? ¿Y de los datos?
- ¿Piensas que los profesionales sanitarios están actualmente capacitados para emplear la Salud Digital? ¿Son adecuados los programas de formación actuales?
- ¿Cómo podrían usarse las redes sociales para mejorar la salud y el bienestar de los ciudadanos?
- ¿Crees que llegará un momento en que el crecimiento del volumen de datos en el mundo se ralentizará, o seguirá creciendo a este ritmo mucho tiempo?
- ¿Crees que un ordenador lo suficientemente potente, incluido un ordenador cuántico, podría resolver cualquier problema de ML que se le propusiera en un tiempo razonable?
- ¿Crees que el ML podría servir para incrementar el control de los estados sobre los ciudadanos?
- ¿Crees que el ML podría ser utilizado por las organizaciones o los estados para "clasificar" a la gente en determinados grupos?
- ¿Crees que el ML pueda llegar a ser alguna vez tan potente que pueda crear una inteligencia alternativa a la humana?

7. Fuentes de información

Estrategia para el abordaje de la cronicidad en el Sistema Nacional de Salud.

https://www.mscbs.gob.es/organizacion/sns/planCalidadSNS/pdf/ESTRATEGIA_ABORD

AJE CRONICIDAD.pdf

Implantación de programas de telemedicina en la sanidad pública de España: experiencia desde la perspectiva de clínicos y decisores https://www.researchgate.net/publication/237574691_Implantacion_de_programas_d e_telemedicina_en_la_sanidad_publica_de_Espana_experiencia_desde_la_perspectiva_de_clinicos_y_decisores

Innovación TIC para las personas mayores. Situación, requerimientos y soluciones en la atención integral de la cronicidad y la dependencia.

https://www.fundacionvodafone.es/publicacion/innovacion-tic-para-las-personas-may ores-situacion-requerimientos-y-soluciones-en-la

HAZLO, programa de salud digital desarrollado en el ISCIII, busca mejorar la rehabilitación cardiaca

https://www.isciii.es/Noticias/Noticias/Paginas/Noticias/hazlo-programa-de-salud-digital-para-rehabilitacion-cardiaca.aspx

En inglés:

WHO Guideline: recommendations on digital interventions for health system strengthening

https://www.who.int/reproductivehealth/publications/digital-interventions-health-system-strengthening/en/

PITES: TELEMEDICINE AND E-HEALTH INNOVATION PLATFORM http://gesdoc.isciii.es/gesdoccontroller?action=download&id=16/05/2014-7cfacb51ee

PITES-ISA: NEW SERVICES BASED ON TELEMEDICINE AND E-HEALTH AIMEDAT INTEROPERABILITY, PATIENT SAFETY AND DECISION SUPPORT http://gesdoc.isciii.es/gesdoccontroller?action=download&id=01/02/2018-38a232d2cc

La mayoría del contenido de ML de este resumen está directamente extraída del libro *Data Mining. Practical Machine Learning Tools and Techniques. Third Edition.* Morgan Kaufmann. El libro está disponible y dispone está repleto de una excelente y exhaustiva bibliografía, aunque su fecha de publicación sea 2011.